Color Image Segmentation Using Multispectral Random Field Texture Model & Color Content Features

نویسندگان

  • Orlando J. Hernandez
  • Alireza Khotanzad
چکیده

This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Color Textures Using Multispectral Random Field Models

A large number of texture classification approaches have been developed in the past but most of these studies target gray-level textures. In this paper, supervised classification of color textures is considered. Several different Multispectral Random Field models are used to characterize the texture. The classifying features are based on the estimated parameters of these model and functions def...

متن کامل

A Classification Methodology for Color Textures Using Multispectral Random Field Mathematical Models

A large number of texture classification approaches have been developed in the past but most of these studies target gray-level textures. In this paper, supervised classification of color textures is considered. Several different Multispectral Random Field models are used to characterize the texture. The classifying features are based on the estimated parameters of these model and functions def...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

A Markov Random Field Image Segmentation Model Using Combined Color and Texture Features

In this paper, we propose a Markov random field (MRF) image segmentation model which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation associated with combinatorial optimization (Simulated Annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004